
1

<Insert Picture Here>

Scalable Application Design

Bjørn Engsig

Principal Member of Technical Staff

Oracle Server Technologies

Agenda

• Who am I?

• Background

• The scalable database software

• Cursor processing

• Session pooling

• Connection pooling

• Summary

Who am I?

• Bjørn Engsig

• Real World Performance Team

• Wrote several versions of the white paper ”Designing

Applications for Performance and Scalability”

• Almost famous for saying ”It’s the applications fault”

Background

• Scalability comes from a balance between private and
shared information

L1 and L2 cacheMain memory

Your bind values and
results

SQL parse tree and
execution plan

Sort areaBuffer cache

Why not your own?Database instance

Your PCServer

PrivateShared

Background
– resource sharing

• Effective resource usage

• Need for a protocol

• Latches

• Mutex

• Cache coherency

• Cooperative clients

• Important metrics

• Cost of acquiring/releasing a resource

• Time spent using the resource

2

Two carpenters with one toolbox

• Who uses the tools when?

This presentation

• SQL statements/cursors

• Parsing and execution

• Bind variables

• Pitfalls and quirks

• Database sessions

• Sharable or not

• Session pools

• Application requirements, multithreading

This presentation ...

• SQL*Net Connections

• Connection pooling

• Application possibilities

• Database Resident Connection Pool

• Shared Server

• Summary

• When to use what

The scalable database software

• Server side

• Ability to share cursor information

• Soft parsing

• Hard parsing

• SQL literal handling

• Library cache

• Client side

• New design from scratch (OCI in version 8)

• Separation of connection, session and transaction

• Pools everywhere

• Very early design decisions proved very correct

The scalable database software Cursor processing

• A ”cursor” is a handle to the execution of a particular

SQL statement (or PL/SQL block)

• Associates the client side execution with runtime data
to the server side

• Server side split between shared and private

• Apparently same representation on client and server

• Quite subtle and quite important differences, however

• Client APIs are different

3

Cursor processing
– server side

• Parse
• Initial (hard) parse primarily does syntax checking and object

existence

• Subsequent (soft) parse verifies object availability, access
control, etc

• Optimize
• Mostly done during first execute

• Never explicitly done

• Execute
• Actually uses runtime specific data (queries, DML, PL/SQL)

• Fetch
• Returns results for queries only

Cursor processing
– client (or application server) side

• Parse/prepare

• Prepares a SQL statement for execution

• Bind

• Links placeholders in SQL statement to application data

• Execute

• Not intuitive what actually happens on the server

• Different API’s behave differently

• Define

• Defines application storage for select list elements

• Fetch

• Retrieves query results into defined storage

Cursor processing
– sample code

cursor cur;

number custid, ordid;

parse(cur,

”insert into orders(custid, ordid) values (:1, :2)”);

loop

custid := /* some value */

ordid := /* some value */

bind(cur, 1, custid);

bind(cur, 2, ordid);

execute(cur);

commit;

end loop;

Cursor processing
– sample code with soft parse

loop

cursor cur;

number custid, ordid;

parse(cur,

”insert into orders(custid, ordid) values (:1, :2)”);

custid := /* some value */

ordid := /* some value */

bind(cur, 1, custid);

bind(cur, 2, ordid);

execute(cur);

commit;

end loop;

Cursor processing
– application and database server

Client private
information

Application
code

Shared
information in
system global
area

cursor_a

data

select ...

select ...

insert ...

cursor #

bind values

result

cursor #

bind values

result

cursor #

bind values

result

Network

cursor_b

data

cursor_c

data

S
e

rv
e

r
s
id

e

Cursor processing
– application and database server

cursor_a

data

select ...

select ...

insert ...

cursor #

bind values

result

S
e

rv
e

r
s
id

e

cursor_b

data

cursor #

bind values

result

cursor #

bind values

result

select ...

insert ...

cursor_a

data

cursor #

bind values

result

cursor #

bind values

result

cursor_c

data

cursor_e

data
Multiple clients

4

Cursor processing
– frequent execution

• Remember the carpenter – cost of acquiring (low to
moderate) vs. cost of using (low)

• Keep cursor open on client side

• Avoids the soft parse

• Just change bind values between execution

• Make sure different clients use the same SQL
statement

• Beware of bind value peeking

• Still the best despite recent library cache changes

Cursor processing
– infrequent execution

• Remember the carpenter – cost of acquiring
(moderate) vs. cost of using (high)

• Using literals make the optimizer do its job well

• You want the statement optimized for each execution

• Also with different clients

• Beware of bind value peeking

Cursor processing
– sample code with hard parse

cursor cur;

parse(cur,

”select /* something complex */

from /* many tables */

where /* join predicates */

and t1.a=42

and t2.b=2

and (t3.c=4 or t3.d like ’ABC%’)

and t4.e in (7,9,13)”);

define(cur, ...);

execute(cur);

Cursor processing
– common mistakes

• Bind peeking fixing execution plan
• Different plans really needed for different values

cursor cur;

number custid, status;

parse(cur,

”select * from orders where custid=:1 and status =:2)”);

loop

custid := /* some value */

status := /* some value */

bind(cur, 1, custid);

bind(cur, 2, status);

execute(cur);

define(cur, ...);

fetch;

end loop;

Cursor processing
– common mistakes

• Using SQL to do procedural logic

cursor cur;

number custid

string custname;

parse(cur,

”select * from orders where

(:1 is not null and custid=:1)

or (:2 is not null and custname=:2)”);

loop

custid := /* some value – maybe NULL */

custname := /* some value – maybe NULL */

bind(cur, 1, custid);

bind(cur, 2, custname);

execute(cur);

define(cur, ...);

fetch(cur);

end loop;

Cursor processing
– why these mistakes?

• Application programmers have finally learned using

bind variables

• ”avoid the soft parse” mantra leads to certain
programming style

• Hard to keep track of many SQL statements with only
minor differences

5

Cursor processing
– and the solution

• Let API handle cursor re-use using a cursor

cache

• Application does prepare/release in stead of
parse

• Size of cursor cache should be properly controlled

• Too high implies memory wastage

• Too low implies soft parsing

Cursor processing
– and the solution

loop

cursor cur;

number custid

string custname;

if /* custid is known */

prepare(cur, ”select * from orders where custid=:1)

bind(cur, 1, custid);

else /* find using name */

prepare(cur, ”select * from orders where custname=:1)

bind(cur, 1, custname);

end if;

execute(cur);

define(cur, ...);

fetch(cur);

release(cur);

end loop;

With prepare/release pair, the API
will automatically cache the SQL
statements ready for execution

Cursor processing
– bind peeking in Oracle11g

• Bind peeking at first execution stores optimizer

information

• At subsequent executes, execute layer realizes bind
value has changed sufficiently to make execution plan

invalid

• New execution plan created and stored

• Several concurrent execution plans

• You may see higher library cache demand

SQL*Net roundtrips

• Roundtrip between application and database server

have cost

• Involve TCP/IP stack and physical network

• SQL*Net is very chatty

• Reducing number of roundtrips increases network
performance and scalability

• Always use API’s feature for roundtrip reduction

• The execute call is often a ”do-it-all” call, that does parse (if
needed), bind and server side execute

• Array interface

• Mostly done implicitly

SQL*Net
– array fetch

• Automatically done in most API’s

• The ”do-it-all” execute call will also implicitly fetch a
number of rows

• Controlled via row count or memory size

• Don’t forget to set it!

• Beware of older API’s

• Can have high impact

SQL*Net
– array fetch

cursor cur;

number custid, ordid, status;

parse(cur,

”select custid,ordid from orders where status =:1)”);

status := /* some value */

bind(cur, 1, status);

execute(cur);

define(cur, 1, custid);

define(cur, 2, ordid);

while fetch(cur) loop

/* process one row */

end loop;

first actual roundtrip done here,
also fills implicit array with rows

incurs roundtrip only when
array is exhausted

6

SQL*Net
– array DML

• Mostly used for insert operations

• Most API’s require actual application implementation
using array

• Big impact on massive inserts

SQL*Net
– array DML

cursor cur;

number custid[N], ordid[N]; /* declare arrays */

parse(cur,

”insert into orders(custid, ordid) values (:1, :2)”);

for i in 1..N loop

custid[i] := /* some value */

ordid[i] := /* some value */

end loop;

bindarray(cur, 1, custid);

bindarray(cur, 2, ordid);

executearray(cur, N);

commit;

Actual arrays declared

Bind explicitly to arrays

Complete array processed in one roundtrip

Application/server connections

• Traditional dedicated server

• Session pooling

• Connection pooling

• Database Resident Connection Pool

• Shared Server

• Comparison

Traditional Dedicated Server

• Connection and session established at the same time

• Kept until logoff

• Single or multithreaded application

• Hard upper limit

• Thousands possible

• Hundreds of thousands are not possible

Dedicated server
– traditional client/server

Database
server
processes

Application
server
processes

Shared pool
in system
global area

Session context 4

Process 1

/* idle in

database */

Process 2

/* idle in

database */

Process 3

/* possibly

doing data-

base work */

Process/session 4

parse(cursor,

bind(cursor, ..);

execute(cursor);

cursor

select ...

Session pooling
– overview

• A session is the context within which a specific (application) user
executes SQL statements

• Cursors are allocated under sessions

• High cost of creating a session (compared to execution of a SQL
statement)

• Sessions are a limited resource

• Thousands are possible

• Hundreds of thousands are not

• High memory requirements on database server

• Mostly due to many open cursors

• Sessions may contain state

• NLS environment, PL/SQL package data, etc.

• State information may make sharing or reuse difficult

7

Session pooling

• Multithreaded application

• Many threads taking user request

• Pooled sessions actually do database work

• Application requirements:

• Multithreaded

• Code must explicitly acquire and release sessions

• No state kept after session release

• Efficient sharing requires homogeneity between sessions

• same username, NLS environments, other session setting

• Control of request count and session count

Session pooling
– example

time

Non database processing

External request received

Acquire session

Active database processing

s
q
l
1

s
q
l
2

s
q
l
3

s
q
l
4

.
.
.

Release session

Idle until next request received

Session pooling

• ”No state kept” used to imply, no open cursors kept

• Statement cache and cursor prepare/release will
overcome this

• Always use newer calls

• Full scalability ensured

time

Acquire

s
q
l
1

s
q
l
2

s
q
l
3

s
q
l
4

.
.
.

Release Acquire

s
q
l
5

s
q
l
4

s
q
l
6

s
q
l
2

.
.
.

Release

API will cache common cursors

Connection pooling
– overview

• A connection is the SQL*Net transport protocol from

the application to the database server

• Sessions run on top of connections

• High cost creating a connection

• Network stack on application and database server

• Process creation by the O/S

• Connections are a limited resource

• Thousands are possible

• Hundreds of thousands are not

• Connections contain no state information

Connection pooling
– overview

• Multithreaded applications

• Completely homogeneous and re-usable connections

• A connection is automatically picked for each
SQL*Net roundtrip

• Very few application changes
• No need to (explicitly) acquire/release connections

• Sessions can keep state for a long time

• Session memory allocated on database server
• Different allocation scheme than with dedicated connections

• Watch out for memory overhead when sessions have long
idle times

• Control of connection pool required

Connection pooling

Connection pool

Database
server
processes

Multithreaded
application
server
process

Session 1
Session 2

Session 3
Session 4

Session 6

parse(cursor,

bind(cursor, ..);

execute(cursor);
Session 5

execute

Shared pool
in system
global area

Session context 1
Session context 2

Session context 3
Session context 4

Session context 5

Session context 6

select ...

cursor

8

Database Resident Connection Pool

• New feature in Oracle11g

• Allows pooling between application processes

• Multi threaded application not needed

• Actually provides a session pool

• Session acquire/release needed

• Uses a broker on the database server side

Database Resident Connection Pool

Broker process

Database
server
processes

Application
server
processes

Process/session 4

session_acquire();

/* database work */

session_release();

Shared pool
in system
global area

Session context 1
Session context 2

Session context 3 Session context 4

Process 1

/* idle in

database */

Process 2

/* idle in

database */

Connection pool

Process 3

/* idle in

database */

Shared Server

• Pooling purely on the database server side

• Completely transparent to application code

• All requests go via a dispatcher

• Performance overhead

• Process switch

execute

Shared Server

Dispatcher process

Database
server
processes

Application
server
processes

Process/session 4

parse(cursor,

bind(cursor, ..);

execute(cursor);

Shared pool
in system
global area

Session context 1
Session context 2

Session context 3 Session context 4

cursor

Process 1

/* idle in

database */

Process 2

/* idle in

database */

Connection pool

Process 3

/* idle in

database */

cursor
select ...

Pooling comparison

• Method

• Coding

• Server

• Scalability

• Performance

• Usability

• Connection or pooling method

• Application coding requirements

• Administration complexity on server side

• Possibilities for scalable application design

• Raw performance implications not including

scalability

• Typical application types using this method

Direct, dedicated connection

• Traditional stateful or stateless application coding,

complete session and cursor control

• Simple server administration

• Scalability can be fully ensured using proper cursor
control avoiding soft parsing. Hard upper limit on
concurrent connections.

• Best possible performance

• Recommended and very efficient for batch

processing, in particular with client imposed control on
number of concurrent batch processes.

9

Connection pooling

• Stateful or stateless application coding, must be
multithreaded

• Complex server configuration as private session
memory is in SGA and uneven process and session
count.

• Full scalability ensured with proper cursor processing,
concurrency limitation imposed by application server

• Best possible performance

• Recommended for back-office type applications with
relatively constant think-time and processing time,
works well with rich session state (e.g. PL/SQL
packages variables, long running cursors)

Session pooling

• Stateless applications only, sessions must explicitly

be acquired and released, must be multi threaded

• Relatively simple server configuration

• Scalability possible with homogeneous sessions, use
of prepare/release API is necessary

• Possibly very good performance, homogeneous

sessions required

• Recommended for Internet type applications and for

back-office type applications that can use
homogeneous sessions, not suited for batch
processing

Database Resident Connection Pool

• Stateless applications only, sessions must explicitly
be acquired and released, can be single or multi
threaded

• Complex server administration, session private
memory in SGA, DRCP configuration

• Scalability via server side, rarely possible to avoid soft
parse

• Good performance, little overhead with session
acquire/release

• Recommended for Internet type applications that
cannot run multi-threaded such as PHP, not suited for
batch processing

Shared Server

• Any application type will work

• Complex server configuration of dispatchers, servers
and session private memory in SGA

• Minor scalability impact of dispatchers

• Performance consistently impacted by dispatchers

• Rarely good, but the only possibility for stateful, single
threaded applications that have long idle times

Summary

• Oracle improves scalability with each version

• We see so many real world cases; we know where the typical
problems are.

• Some improvements come for free

• Benefit for new and existing applications

• Some improvements require application
implementation

• Good application design and development continues

to be important

• Added features add to decision complexity

Q & A

Q&A

10

